1,785 research outputs found

    The Distributed MIMO Scenario: Can Ideal ADCs Be Replaced by Low-resolution ADCs?

    Get PDF
    This letter considers the architecture of distributed antenna system, which is made up of a massive number of single-antenna remote radio heads (RRHs), some with full-resolution but others with low-resolution analog-to-digital converter (ADC) receivers. This architecture is greatly motivated by its high energy efficiency and low-cost implementation. We derive the worst-case uplink spectral efficiency (SE) of the system assuming a frequency-flat channel and maximum-ratio combining (MRC), and reveal that the SE increases as the number of quantization bits for the low-resolution ADCs increases, and the SE converges as the number of RRHs with low-resolution ADCs grows. Our results furthermore demonstrate that a great improvement can be obtained by adding a majority of RRHs with low-resolution ADC receivers, if sufficient quantization precision and an acceptable proportion of high-to-low resolution RRHs are used.Comment: 4 pages, to be published in IEEE Wireless Communications Letter

    Bayes-Optimal Joint Channel-and-Data Estimation for Massive MIMO with Low-Precision ADCs

    Get PDF
    This paper considers a multiple-input multiple-output (MIMO) receiver with very low-precision analog-to-digital convertors (ADCs) with the goal of developing massive MIMO antenna systems that require minimal cost and power. Previous studies demonstrated that the training duration should be {\em relatively long} to obtain acceptable channel state information. To address this requirement, we adopt a joint channel-and-data (JCD) estimation method based on Bayes-optimal inference. This method yields minimal mean square errors with respect to the channels and payload data. We develop a Bayes-optimal JCD estimator using a recent technique based on approximate message passing. We then present an analytical framework to study the theoretical performance of the estimator in the large-system limit. Simulation results confirm our analytical results, which allow the efficient evaluation of the performance of quantized massive MIMO systems and provide insights into effective system design.Comment: accepted in IEEE Transactions on Signal Processin
    • …
    corecore